Description
Our activity focuses on achieving a better understanding of the vulnerability of continental water resources and aquatic ecosystems to diffuse pollution through an interdisciplinary and transversal approach (global change–water resources–agroecosystems). Our research is framed in the following Sustainable Development Goals: Goal 6 (availability and sustainable management of water), goal 13 (climate change) and goal 15 (sustainable management of terrestrial ecosystems) of the 2030 Agenda for Sustainable Development (UN Economic and Social Council).
Research lines
- Development of new diagnostic tools within the GIS environment to assess groundwater vulnerability to nitrate pollution from diffuse sources and to improve the nitrate vulnerable zones designation criteria.
- Spatial modelling of N and P compounds from diffuse sources and multivariate analysis of their environment according to a source-pathway-receptor approach. Effects of diffuse pollution on water resources quality and biodiversity.
- Characterisation of nitrogen and phosphorous compounds leaching in the vadose zone. The role of land use and the physical environment.
Recent Highlights
- Digital thematic maps (for free download)
-
New diagnostic tool to assess groundwater vulnerability to nitrate pollution from diffuse sources: LU-IV Procedure
Arauzo, M., Valladolid, García, G. 2021. Digital map of groundwater vulnerability to nitrate pollution in the Ebro Hydrological District (Spain) based on the LU-IV Procedure [Raster map]. Zenodo. https://doi.org/10.5281/zenodo.14824288
Arauzo, M. Valladolid, M. & García, G. 2021. Digital map of intrinsic vulnerability of groundwater in the Ebro Hydrological District (Spain) based on the IV Index [Raster map]. Zenodo. https://doi.org/10.5281/zenodo.14850695
Arauzo, M., Valladolid, M., Andries, D.M. 2022. Would delineation of nitrate vulnerable zones be improved by introducing a new parameter representing the risk associated with soil permeability in the Land Use-Intrinsic Vulnerability Procedure? Science of the Total Environment, 840: 156654. https://doi.org10.1016/j.scitotenv.2022.156654
Arauzo, M., Valladolid, M., García, G. 2020. Cartografía de la vulnerabilidad de las aguas subterráneas a la contaminación por nitratos de fuentes difusas en la cuenca del río Ebro (N.E. de España). Estudios Geológicos 76, e132. https://doi.org/10.3989/egeol.43868.586
Arauzo, M., García, G., Valladolid, M. 2019. Assessment of the risks of N–loss to groundwater from data on N–balance surplus in Spanish crops: An empirical basis to identify Nitrate Vulnerable Zones. Science of the Total Environment, 696: 133713. https://doi.org/10.1016/j.scitotenv.2019.133713
Salman, A.A., Arauzo, M., Elnazer, A.A. 2019. Groundwater quality and vulnerability assessment in west Luxor Governorate, Egypt. Groundwater for Sustainable Development, 8: 271–280. https://doi.org/10.1016/j.gsd.2018.11.009
Arauzo, M. 2017. Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting Nitrate Vulnerable Zones. Science of the Total Environment 575, 799–812. https://doi.org/10.1016/j.scitotenv.2016.09.139 -
Spatial modelling of N and P compounds from diffuse sources and multivariate analysis of their environment according to a source-pathway-receptor approach
Arauzo, M. Valladolid, M. & Andries, D.M. 2025 Digital map of nitrate concentration in groundwater in the Segura Hydrological District (Spain) [Raster map]. Zenodo. https://doi.org/10.5281/zenodo.14865102
Arauzo, M., Valladolid, M., Andries, D.M. 2024. Groundwater nitrate pollution in the Segura Hydrological District (Spain) and the way it affects the Mar Menor catchment area in particular. Estudios Geológicos, 80(1): 1071. https://doi.org/10.3989/egeol.45105.1071
Arauzo M., Valladolid M. 2023. Diffuse Pollution Pathways are not the same for N and P Compounds. J. Biomed. Res. Environ Sci. 2023 Dec 22; 4(12): 1689-1691. https://doi.org/10.37871/jbres1853
Arauzo, M., Valladolid, M., García, G, Andries, D.M. 2022. N and P behaviour in alluvial aquifers and in the soil solution of their catchment areas: How land use and the physical environment contribute to diffuse pollution. Science of the Total Environment, 804: 150056. https://doi.org/10.1016/j.scitotenv.2021.150056 -
Advances in taxonomy and knowledge of biodiversity
Valladolid, M., Ekingen, P., Arauzo, M., Dorda, B.A., Rey, I. 2024. The Rhyacophila fasciata Species Complex (Trichoptera: Rhyacophilidae) in Turkey with description of a new species, Rhyacophila anatolica Ekingen & Valladolid, sp. nov., based on morphological, genetic, and ecological evidence. Zootaxa, 5537 (3): 301-324. https://doi.org/10.11646/zootaxa.5537.3.1
Valladolid, M., Waringer, J., Arauzo, M., Chvojka, P., Dorda, B.A., Komzák, P., Lodovici, O., Rey, I. 2023. The Rhyacophila fasciata Species Complex (Trichoptera: Rhyacophilidae) in Central Europe with description of a new species, Rhyacophila loeffleri Valladolid & Waringer, n. sp., based on morphological, genetic and ecological evidence. Zootaxa, 5325 (4): 451-482. https://doi.org/10.11646/zootaxa.5325.4.1
Valladolid M., I. Karaouzas, H. Ibrahimi, M. Arauzo, V. S. Stamenković, B.A. Dorda, J. Hinić, A. Bilalli, M. MUsliu, I. Rey. 2022. The Rhyacophila fasciata Group in Europe: Rhyacophila macedonica Karaouzas, Valladolid & Ibrahimi (n. sp.) from Greece, Kosovo, Republic of North Macedonia and Serbia (Trichoptera: Rhyacophilidae). Zootaxsa, 5125: 101-130. https://doi.org/10.11646/zootaxa.5125.2.1
Valladolid, M., M. Arauzo, B.A. Dorda, M. París, I. Rey. 2022. Complete data of the DNA sequences used for the study of the Rhyacophila fasciata Group (Insecta, Trichoptera, Rhyacophilidae) in Europe [Dataset]. https://digital.csic.es/handle/10261/260864
Valladolid, M., M. Arauzo, M.V. Chertoprud, P. Chvojka, S. Czachorowski, B.A. Dorda, J. Hinić, H. Ibrahimi, I. Karaouzas, V. Krpač, M. Kučinić, O. Lodovici, J. Salokannel, V. Slavevska Stamenković, K. Stojanović, I. Wallace, I. Rey. 2021. The Rhyacophila fasciata Group in Europe: Rhyacophila fasciata Hagen 1859 and formerly synonymized species (Trichoptera: Rhyacophilidae), with new description of Rhyacophila fasciata and Rhyacophila septentrionis McLachlan 1865 (stat. prom.). Zootaxa, 4975: 001-057. https://doi.org/10.11646/zootaxa.4975.1.1
Clavero-Camacho, I., G. Liébanas, M. Escuer. Cantalapiedra-Navarrete, C. Archidona-Yuste, A. Castillo, P. Palomares-Rius, J.E. 2021. Studies on Longidorus iberis (Escuer & Arias, 1997) n. comb. (Nematoda: Longidoridae) from Spain. Nematology 23: 771-885. https://doi.org/10.1163/15685411-bja10082
Valladolid, M., M. Kučinić, M. Arauzo, D. Cerjanec, R. Ćuk, B.A. Dorda, O. Lodovici, S. Stanić-Koštroman, Vučković, I. Rey. 2020. The Rhyacophila fasciata Group in Croatia and Bosnia and Herzegovina: Rhyacophila f. fasciata Hagen 1859 and the description of two new subspecies, Rhyacophila fasciata delici Kučinić & Valladolid (ssp. nov.) from Croatia and Bosnia and Herzegovina and Rhyacophila fasciata viteceki Valladolid & Kučinić ic (ssp. nov.) from Bosnia and Herzegovina (Trichoptera: Rhyacophilidae). Zootaxa, 4885: 051-075. https://doi.org/10.11646/zootaxa.4885.1.3
Valladolid, M., I. Karaouzas, M. Arauzo, B.A. Dorba, I. Rey. 2019. The Rhyacophila fasciata Group in Greece: Rhyacophila kykladica Malicky & Sipahiler 1993 (stat. prom.) (Trichoptera: Rhyacophilidae). Morphological description, genetic and ecological features. Zootaxa, 4657: 503–522. https://doi.org/10.11646/zootaxa.4657.3.5 -
Geostatistics and multivariate analysis applied to abiotic and biotic factors to identify polluted areas, evaluate the responses of edaphic nematofauna and provide the basis for modelling the ecological processes of the soil
Rodríguez, J.A., Gutiérrez, C., Escuer, M., Martín-Dacal, M., Ramos-Miras, J.J., Roca-Perez, L., Boluda, R., Nanos, N. 2021 .Trends in soil mercury stock associated with pollution sources on a Mediterranean island (Majorca, Spain). Environmental Pollution 283: 117397. https://doi.org/10.1016/j.envpol.2021.117397.
Van den Hoogen, J., Geisen, S.,…Gutiérrez, C. et al. 2020. A global database of soil nematode abundance and functional group composition. Scientific Data: 7: 103. https://doi.org/10.1038/s41597-020-0437-3.
Van den Hoogen, J., Geisen, S.,…Gutiérrez, C. et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature, 572: 194-198. DOI: https://doi.org/10.1038/s41586-019-1418-6.
Rodriguez, J.A., Álvaro-Fuentes, J., Gabriel, J.L., Gutiérrez, C., Nanos, N., Escuer, M., Ramos-Miras, J.J., Boluda, R.. 2019. Soil organic carbon stock on the Majorca Island: temporal change in agricultural soil over the last 10 years. Catena, 181: 104087. https://doi.org/10.1016/j.catena.2019.104087. -
Digital materials
Arauzo M., M. Valladolid, G. García, N. Hermida. 2022. Mapa WMS de la vulnerabilidad específica a la contaminación por nitrato de las aguas subterráneas (Procedimiento LU-IV). Descripción: Servicio cartográfico WMS (Web Map Service) y metadato. IMAGO ORBIS. http://sigyhd.cchs.csic.es/geonetwork/srv/spa/catalog.search#/metadata/Spain_sigyhd.cchs.csic_ICA.VulnerabilidadCont_NitratoPro_LU_IV
Arauzo M., M. Valladolid, G. García, N. Hermida. 2022. Mapa WMS de la vulnerabilidad intrínseca de las aguas subterráneas (Índice IV). IMAGO ORBIS. Descripción: Servicio cartográfico WMS (Web Map Service) y metadato. IMAGO ORBIS. http://sigyhd.cchs.csic.es/geonetwork/srv/spa/catalog.search#/metadata/Spain_sigyhd.cchs.csic_ICA.VulnerabilidadIntrinsecaIndice_IV
Arauzo M., M. Valladolid, G. García. 2021. Mapa digital de la vulnerabilidad específica a la contaminación por nitrato de las aguas subterráneas (Procedimiento LU-IV); Cuenca del Ebro, España. Descripción: Mapa digital, metadatos y metodología. Raster de banda única y 25 m de resolución que representa la vulnerabilidad específica a la contaminación por nitrato procedente de fuentes difusas de las masas de agua subterránea de la Demarcación Hidrográfica del Ebro mediante el procedimiento LU-IV (Land Use–Intrinsic Vulnerability). URL de descarga en Infraestructura de Datos Espaciales de España (Ministerio de Transportes, Movilidad y Agenda Urbana): Recursos. Centros de Descarga Estatal. Consejo Superior de Investigaciones Científicas. Cartografía Digital del Instituto de Ciencias Agrarias (ICA). https://www.idee.es/web/idee/centros-de-descarga/estatal
Arauzo M., M. Valladolid, G. García. 2021. Mapa digital de la vulnerabilidad intrínseca de las aguas subterráneas (Índice IV); Cuenca del Ebro, España. Descripción: Mapa digital, metadatos y metodología. Raster de banda única y 25 m de resolución que representa la vulnerabilidad intrínseca a la contaminación de las masas de agua subterránea de la Demarcación Hidrográfica del Ebro mediante el índice IV (Intrinsic Vulnerability). URL de descarga en Infraestructura de Datos Espaciales de España (Ministerio de Transportes, Movilidad y Agenda Urbana): Recursos. Centros de Descarga Estatal. Consejo Superior de Investigaciones Científicas. Cartografía Digital del Instituto de Ciencias Agrarias (ICA). https://www.idee.es/web/idee/centros-de-descarga/estatal